题目出处
题目描述
个人解法
思路:
合并2个数组,重新排序,找出其中位数
代码示例:(Java)
复杂度分析
官方解法
方法1:二分查找
思路:
代码示例:(Java)
class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
int length1 = nums1.length, length2 = nums2.length;
int totalLength = length1 + length2;
if (totalLength % 2 == 1) {
int midIndex = totalLength / 2;
double median = getKthElement(nums1, nums2, midIndex + 1);
return median;
} else {
int midIndex1 = totalLength / 2 - 1, midIndex2 = totalLength / 2;
double median = (getKthElement(nums1, nums2, midIndex1 + 1) + getKthElement(nums1, nums2, midIndex2 + 1)) / 2.0;
return median;
}
}
public int getKthElement(int[] nums1, int[] nums2, int k) {
/* 主要思路:要找到第 k (k>1) 小的元素,那么就取 pivot1 = nums1[k/2-1] 和 pivot2 = nums2[k/2-1] 进行比较
* 这里的 "/" 表示整除
* nums1 中小于等于 pivot1 的元素有 nums1[0 .. k/2-2] 共计 k/2-1 个
* nums2 中小于等于 pivot2 的元素有 nums2[0 .. k/2-2] 共计 k/2-1 个
* 取 pivot = min(pivot1, pivot2),两个数组中小于等于 pivot 的元素共计不会超过 (k/2-1) + (k/2-1) <= k-2 个
* 这样 pivot 本身最大也只能是第 k-1 小的元素
* 如果 pivot = pivot1,那么 nums1[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums1 数组
* 如果 pivot = pivot2,那么 nums2[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums2 数组
* 由于我们 "删除" 了一些元素(这些元素都比第 k 小的元素要小),因此需要修改 k 的值,减去删除的数的个数
*/
int length1 = nums1.length, length2 = nums2.length;
int index1 = 0, index2 = 0;
int kthElement = 0;
while (true) {
// 边界情况
if (index1 == length1) {
return nums2[index2 + k - 1];
}
if (index2 == length2) {
return nums1[index1 + k - 1];
}
if (k == 1) {
return Math.min(nums1[index1], nums2[index2]);
}
// 正常情况
int half = k / 2;
int newIndex1 = Math.min(index1 + half, length1) - 1;
int newIndex2 = Math.min(index2 + half, length2) - 1;
int pivot1 = nums1[newIndex1], pivot2 = nums2[newIndex2];
if (pivot1 <= pivot2) {
k -= (newIndex1 - index1 + 1);
index1 = newIndex1 + 1;
} else {
k -= (newIndex2 - index2 + 1);
index2 = newIndex2 + 1;
}
}
}
}
复杂度分析
方法2:划分数组
思路:
代码示例:(Java)
class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
if (nums1.length > nums2.length) {
return findMedianSortedArrays(nums2, nums1);
}
int m = nums1.length;
int n = nums2.length;
int left = 0, right = m;
// median1:前一部分的最大值
// median2:后一部分的最小值
int median1 = 0, median2 = 0;
while (left <= right) {
// 前一部分包含 nums1[0 .. i-1] 和 nums2[0 .. j-1]
// 后一部分包含 nums1[i .. m-1] 和 nums2[j .. n-1]
int i = (left + right) / 2;
int j = (m + n + 1) / 2 - i;
// nums_im1, nums_i, nums_jm1, nums_j 分别表示 nums1[i-1], nums1[i], nums2[j-1], nums2[j]
int nums_im1 = (i == 0 ? Integer.MIN_VALUE : nums1[i - 1]);
int nums_i = (i == m ? Integer.MAX_VALUE : nums1[i]);
int nums_jm1 = (j == 0 ? Integer.MIN_VALUE : nums2[j - 1]);
int nums_j = (j == n ? Integer.MAX_VALUE : nums2[j]);
if (nums_im1 <= nums_j) {
median1 = Math.max(nums_im1, nums_jm1);
median2 = Math.min(nums_i, nums_j);
left = i + 1;
} else {
right = i - 1;
}
}
return (m + n) % 2 == 0 ? (median1 + median2) / 2.0 : median1;
}
}
复杂度分析
考察知识点
1.正序数组
2.中位数
3.idea中maven工程使用junit单元测试
选中要测试的方法,选择快捷键:ctrl+shift+t即可触发单元测试
4.数组初始化
微信扫一扫:分享
微信里点“发现”,扫一下
二维码便可将本文分享至朋友圈。