题目出处
题目描述
给你一个链表数组,每个链表都已经按升序排列。
请你将所有链表合并到一个升序链表中,返回合并后的链表。
示例 1:
输入:lists = [[1,4,5],[1,3,4],[2,6]]
输出:[1,1,2,3,4,4,5,6]
解释:链表数组如下:
[
1->4->5,
1->3->4,
2->6
]
将它们合并到一个有序链表中得到。
1->1->2->3->4->4->5->6
示例 2:
输入:lists = []
输出:[]
示例 3:
输入:lists = [[]]
输出:[]
提示:
k == lists.length
0 <= k <= 10^4
0 <= lists[i].length <= 500
-10^4 <= lists[i][j] <= 10^4
lists[i] 按 升序 排列
lists[i].length 的总和不超过 10^4
个人解法
思路:
todo
代码示例:(Java)
todo
复杂度分析
todo
官方解法
前置知识:合并两个有序链表
在解决「合并K个排序链表」这个问题之前,我们先来看一个更简单的问题:如何合并两个有序链表?假设链表 a 和 b 的长度都是 n,如何在 O(n) 的时间代价以及 O(1) 的空间代价完成合并? 这个问题在面试中常常出现,为了达到空间代价是 O(1),我们的宗旨是「原地调整链表元素的 next 指针完成合并」。以下是合并的步骤和注意事项,对这个问题比较熟悉的读者可以跳过这一部分。此部分建议结合代码阅读。
首先我们需要一个变量 head 来保存合并之后链表的头部,你可以把 head 设置为一个虚拟的头(也就是 head 的 val 属性不保存任何值),这是为了方便代码的书写,在整个链表合并完之后,返回它的下一位置即可。
我们需要一个指针 tail 来记录下一个插入位置的前一个位置,以及两个指针 aPtr 和 bPtr 来记录 a 和 b 未合并部分的第一位。注意这里的描述,tail 不是下一个插入的位置,aPtr 和 bPtr 所指向的元素处于「待合并」的状态,也就是说它们还没有合并入最终的链表。 当然你也可以给他们赋予其他的定义,但是定义不同实现就会不同。
当 aPtr 和 bPtr 都不为空的时候,取 val 属性较小的合并;如果 aPtr 为空,则把整个 bPtr 以及后面的元素全部合并;bPtr 为空时同理。
在合并的时候,应该先调整 tail 的 next 属性,再后移 tail 和 *Ptr(aPtr 或者 bPtr)。那么这里 tail 和 *Ptr 是否存在先后顺序呢?它们谁先动谁后动都是一样的,不会改变任何元素的 next 指针。
代码
public class Solution {
@Data
public static class ListNode {
int val;
ListNode next;
ListNode() {
}
ListNode(int val) {
this.val = val;
}
ListNode(int val, ListNode next) {
this.val = val;
this.next = next;
}
}
public ListNode mergeTwoLists(ListNode a, ListNode b) {
if (a == null || b == null) {
return a != null ? a : b;
}
ListNode head = new ListNode(0);
ListNode tail = head, aPtr = a, bPtr = b;
while (aPtr != null && bPtr != null) {
if (aPtr.val < bPtr.val) {
tail.next = aPtr;
aPtr = aPtr.next;
} else {
tail.next = bPtr;
bPtr = bPtr.next;
}
tail = tail.next;
}
tail.next = (aPtr != null ? aPtr : bPtr);
return head.next;
}
}
复杂度分析
- 时间复杂度:O(n)。
- 空间复杂度:O(1)。
方法1:顺序合并
思路:
我们可以想到一种最朴素的方法:用一个变量 ans 来维护以及合并的链表,第 i 次循环把第 i 个链表和 ans 合并,答案保存到 ans 中。
代码示例:(Java)
public class Solution1 {
@Data
public static class ListNode {
int val;
ListNode next;
ListNode() {
}
ListNode(int val) {
this.val = val;
}
ListNode(int val, ListNode next) {
this.val = val;
this.next = next;
}
}
public ListNode mergeKLists(ListNode[] lists) {
ListNode ans = null;
for (int i = 0; i < lists.length; ++i) {
ans = mergeTwoLists(ans, lists[i]);
}
return ans;
}
public ListNode mergeTwoLists(ListNode a, ListNode b) {
if (a == null || b == null) {
return a != null ? a : b;
}
ListNode head = new ListNode(0);
ListNode tail = head, aPtr = a, bPtr = b;
while (aPtr != null && bPtr != null) {
if (aPtr.val < bPtr.val) {
tail.next = aPtr;
aPtr = aPtr.next;
} else {
tail.next = bPtr;
bPtr = bPtr.next;
}
tail = tail.next;
}
tail.next = (aPtr != null ? aPtr : bPtr);
return head.next;
}
}
复杂度分析
方法2:分治合并
思路:
代码示例:(Java)
public class Solution2 {
@Data
public static class ListNode {
int val;
ListNode next;
ListNode() {
}
ListNode(int val) {
this.val = val;
}
ListNode(int val, ListNode next) {
this.val = val;
this.next = next;
}
}
public ListNode mergeKLists(ListNode[] lists) {
return merge(lists, 0, lists.length - 1);
}
public ListNode merge(ListNode[] lists, int l, int r) {
if (l == r) {
return lists[l];
}
if (l > r) {
return null;
}
int mid = (l + r) >> 1;
return mergeTwoLists(merge(lists, l, mid), merge(lists, mid + 1, r));
}
public ListNode mergeTwoLists(ListNode a, ListNode b) {
if (a == null || b == null) {
return a != null ? a : b;
}
ListNode head = new ListNode(0);
ListNode tail = head, aPtr = a, bPtr = b;
while (aPtr != null && bPtr != null) {
if (aPtr.val < bPtr.val) {
tail.next = aPtr;
aPtr = aPtr.next;
} else {
tail.next = bPtr;
bPtr = bPtr.next;
}
tail = tail.next;
}
tail.next = (aPtr != null ? aPtr : bPtr);
return head.next;
}
}
复杂度分析
方法3:使用优先队列合并
思路:
这个方法和前两种方法的思路有所不同,我们需要维护当前每个链表没有被合并的元素的最前面一个,k 个链表就最多有 k 个满足这样条件的元素,每次在这些元素里面选取 val 属性最小的元素合并到答案中。在选取最小元素的时候,我们可以用优先队列来优化这个过程。
代码示例:(Java)
public class Solution3 {
@Data
public static class ListNode {
int val;
ListNode next;
ListNode() {
}
ListNode(int val) {
this.val = val;
}
ListNode(int val, ListNode next) {
this.val = val;
this.next = next;
}
}
class Status implements Comparable<Status> {
int val;
ListNode ptr;
Status(int val, ListNode ptr) {
this.val = val;
this.ptr = ptr;
}
public int compareTo(Status status2) {
return this.val - status2.val;
}
}
PriorityQueue<Status> queue = new PriorityQueue<Status>();
public ListNode mergeKLists(ListNode[] lists) {
for (ListNode node : lists) {
if (node != null) {
queue.offer(new Status(node.val, node));
}
}
ListNode head = new ListNode(0);
ListNode tail = head;
while (!queue.isEmpty()) {
Status f = queue.poll();
tail.next = f.ptr;
tail = tail.next;
if (f.ptr.next != null) {
queue.offer(new Status(f.ptr.next.val, f.ptr.next));
}
}
return head.next;
}
}
复杂度分析
- 时间复杂度:考虑优先队列中的元素不超过 k 个,那么插入和删除的时间代价为 O(logk),这里最多有 kn 个点,对于每个点都被插入删除各一次,故总的时间代价即渐进时间复杂度为 O(kn×logk)。
- 空间复杂度:这里用了优先队列,优先队列中的元素不超过 k 个,故渐进空间复杂度为 O(k)。
考察知识点
收获
1.mac idea取消多行注释快捷键
再次执行多行选中快捷键即可
2.mac idea垂直选中
3.PriorityQueue 优先队列