Leecode刷题之路第23天之合并K个升序链表

Scroll Down

题目出处

23-合并K个升序链表-题目出处

题目描述

给你一个链表数组,每个链表都已经按升序排列。

请你将所有链表合并到一个升序链表中,返回合并后的链表。

示例 1:

输入:lists = [[1,4,5],[1,3,4],[2,6]]
输出:[1,1,2,3,4,4,5,6]

解释:链表数组如下:
[
  1->4->5,
  1->3->4,
  2->6
]
将它们合并到一个有序链表中得到。
1->1->2->3->4->4->5->6

示例 2:

输入:lists = []
输出:[]

示例 3:

输入:lists = [[]]
输出:[]

提示:

k == lists.length
0 <= k <= 10^4
0 <= lists[i].length <= 500
-10^4 <= lists[i][j] <= 10^4
lists[i] 按 升序 排列
lists[i].length 的总和不超过 10^4

个人解法

思路:

todo

代码示例:(Java)

todo

复杂度分析

todo

官方解法

23-合并K个升序链表-官方解法

前置知识:合并两个有序链表

在解决「合并K个排序链表」这个问题之前,我们先来看一个更简单的问题:如何合并两个有序链表?假设链表 a 和 b 的长度都是 n,如何在 O(n) 的时间代价以及 O(1) 的空间代价完成合并? 这个问题在面试中常常出现,为了达到空间代价是 O(1),我们的宗旨是「原地调整链表元素的 next 指针完成合并」。以下是合并的步骤和注意事项,对这个问题比较熟悉的读者可以跳过这一部分。此部分建议结合代码阅读。

首先我们需要一个变量 head 来保存合并之后链表的头部,你可以把 head 设置为一个虚拟的头(也就是 head 的 val 属性不保存任何值),这是为了方便代码的书写,在整个链表合并完之后,返回它的下一位置即可。
我们需要一个指针 tail 来记录下一个插入位置的前一个位置,以及两个指针 aPtr 和 bPtr 来记录 a 和 b 未合并部分的第一位。注意这里的描述,tail 不是下一个插入的位置,aPtr 和 bPtr 所指向的元素处于「待合并」的状态,也就是说它们还没有合并入最终的链表。 当然你也可以给他们赋予其他的定义,但是定义不同实现就会不同。
当 aPtr 和 bPtr 都不为空的时候,取 val 属性较小的合并;如果 aPtr 为空,则把整个 bPtr 以及后面的元素全部合并;bPtr 为空时同理。
在合并的时候,应该先调整 tail 的 next 属性,再后移 tail 和 *Ptr(aPtr 或者 bPtr)。那么这里 tail 和 *Ptr 是否存在先后顺序呢?它们谁先动谁后动都是一样的,不会改变任何元素的 next 指针。


代码

public class Solution {

    @Data
    public static class ListNode {
        int val;
        ListNode next;

        ListNode() {
        }

        ListNode(int val) {
            this.val = val;
        }

        ListNode(int val, ListNode next) {
            this.val = val;
            this.next = next;
        }
    }

    public ListNode mergeTwoLists(ListNode a, ListNode b) {
        if (a == null || b == null) {
            return a != null ? a : b;
        }
        ListNode head = new ListNode(0);
        ListNode tail = head, aPtr = a, bPtr = b;
        while (aPtr != null && bPtr != null) {
            if (aPtr.val < bPtr.val) {
                tail.next = aPtr;
                aPtr = aPtr.next;
            } else {
                tail.next = bPtr;
                bPtr = bPtr.next;
            }
            tail = tail.next;
        }
        tail.next = (aPtr != null ? aPtr : bPtr);
        return head.next;
    }

}

复杂度分析

  • 时间复杂度:O(n)。
  • 空间复杂度:O(1)。

方法1:顺序合并

思路:

我们可以想到一种最朴素的方法:用一个变量 ans 来维护以及合并的链表,第 i 次循环把第 i 个链表和 ans 合并,答案保存到 ans 中。

代码示例:(Java)

public class Solution1 {

    @Data
    public static class ListNode {
        int val;
        ListNode next;

        ListNode() {
        }

        ListNode(int val) {
            this.val = val;
        }

        ListNode(int val, ListNode next) {
            this.val = val;
            this.next = next;
        }
    }

    public ListNode mergeKLists(ListNode[] lists) {
        ListNode ans = null;
        for (int i = 0; i < lists.length; ++i) {
            ans = mergeTwoLists(ans, lists[i]);
        }
        return ans;
    }

    public ListNode mergeTwoLists(ListNode a, ListNode b) {
        if (a == null || b == null) {
            return a != null ? a : b;
        }
        ListNode head = new ListNode(0);
        ListNode tail = head, aPtr = a, bPtr = b;
        while (aPtr != null && bPtr != null) {
            if (aPtr.val < bPtr.val) {
                tail.next = aPtr;
                aPtr = aPtr.next;
            } else {
                tail.next = bPtr;
                bPtr = bPtr.next;
            }
            tail = tail.next;
        }
        tail.next = (aPtr != null ? aPtr : bPtr);
        return head.next;
    }


}

复杂度分析

23-合并K个升序链表-顺序合并-复杂度分析

方法2:分治合并

思路:

23-合并K个升序链表-分治合并-思路

代码示例:(Java)

public class Solution2 {

    @Data
    public static class ListNode {
        int val;
        ListNode next;

        ListNode() {
        }

        ListNode(int val) {
            this.val = val;
        }

        ListNode(int val, ListNode next) {
            this.val = val;
            this.next = next;
        }
    }

    public ListNode mergeKLists(ListNode[] lists) {
        return merge(lists, 0, lists.length - 1);
    }

    public ListNode merge(ListNode[] lists, int l, int r) {
        if (l == r) {
            return lists[l];
        }
        if (l > r) {
            return null;
        }
        int mid = (l + r) >> 1;
        return mergeTwoLists(merge(lists, l, mid), merge(lists, mid + 1, r));
    }

    public ListNode mergeTwoLists(ListNode a, ListNode b) {
        if (a == null || b == null) {
            return a != null ? a : b;
        }
        ListNode head = new ListNode(0);
        ListNode tail = head, aPtr = a, bPtr = b;
        while (aPtr != null && bPtr != null) {
            if (aPtr.val < bPtr.val) {
                tail.next = aPtr;
                aPtr = aPtr.next;
            } else {
                tail.next = bPtr;
                bPtr = bPtr.next;
            }
            tail = tail.next;
        }
        tail.next = (aPtr != null ? aPtr : bPtr);
        return head.next;
    }


}

复杂度分析

23-合并K个升序链表-分至合并-复杂度分析

方法3:使用优先队列合并

思路:

这个方法和前两种方法的思路有所不同,我们需要维护当前每个链表没有被合并的元素的最前面一个,k 个链表就最多有 k 个满足这样条件的元素,每次在这些元素里面选取 val 属性最小的元素合并到答案中。在选取最小元素的时候,我们可以用优先队列来优化这个过程。

代码示例:(Java)

public class Solution3 {

    @Data
    public static class ListNode {
        int val;
        ListNode next;

        ListNode() {
        }

        ListNode(int val) {
            this.val = val;
        }

        ListNode(int val, ListNode next) {
            this.val = val;
            this.next = next;
        }
    }

    class Status implements Comparable<Status> {
        int val;
        ListNode ptr;

        Status(int val, ListNode ptr) {
            this.val = val;
            this.ptr = ptr;
        }

        public int compareTo(Status status2) {
            return this.val - status2.val;
        }
    }

    PriorityQueue<Status> queue = new PriorityQueue<Status>();

    public ListNode mergeKLists(ListNode[] lists) {
        for (ListNode node : lists) {
            if (node != null) {
                queue.offer(new Status(node.val, node));
            }
        }
        ListNode head = new ListNode(0);
        ListNode tail = head;
        while (!queue.isEmpty()) {
            Status f = queue.poll();
            tail.next = f.ptr;
            tail = tail.next;
            if (f.ptr.next != null) {
                queue.offer(new Status(f.ptr.next.val, f.ptr.next));
            }
        }
        return head.next;
    }


}

复杂度分析

  • 时间复杂度:考虑优先队列中的元素不超过 k 个,那么插入和删除的时间代价为 O(logk),这里最多有 kn 个点,对于每个点都被插入删除各一次,故总的时间代价即渐进时间复杂度为 O(kn×logk)。
  • 空间复杂度:这里用了优先队列,优先队列中的元素不超过 k 个,故渐进空间复杂度为 O(k)。

考察知识点

收获

1.mac idea取消多行注释快捷键
再次执行多行选中快捷键即可

2.mac idea垂直选中

3.PriorityQueue 优先队列

Gitee源码位置

23-合并K个升序链表-源码

同名文章,已同步发表于CSDN,个人网站,公众号