题目出处
题目描述
给你一个 非严格递增排列 的数组 nums ,请你 原地 删除重复出现的元素,使每个元素 只出现一次 ,返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回 nums 中唯一元素的个数。
考虑 nums 的唯一元素的数量为 k ,你需要做以下事情确保你的题解可以被通过:
更改数组 nums ,使 nums 的前 k 个元素包含唯一元素,并按照它们最初在 nums 中出现的顺序排列。nums 的其余元素与 nums 的大小不重要。
返回 k 。
判题标准:
系统会用下面的代码来测试你的题解:
int[] nums = [...]; // 输入数组
int[] expectedNums = [...]; // 长度正确的期望答案
int k = removeDuplicates(nums); // 调用
assert k == expectedNums.length;
for (int i = 0; i < k; i++) {
assert nums[i] == expectedNums[i];
}
如果所有断言都通过,那么您的题解将被 通过。
示例 1:
输入:nums = [1,1,2]
输出:2, nums = [1,2,_]
解释:函数应该返回新的长度 2 ,并且原数组 nums 的前两个元素被修改为 1, 2 。不需要考虑数组中超出新长度后面的元素。
示例 2:
输入:nums = [0,0,1,1,1,2,2,3,3,4]
输出:5, nums = [0,1,2,3,4]
解释:函数应该返回新的长度 5 , 并且原数组 nums 的前五个元素被修改为 0, 1, 2, 3, 4 。不需要考虑数组中超出新长度后面的元素。
提示:
1 <= nums.length <= 3 * 104
-104 <= nums[i] <= 104
nums 已按 非严格递增 排列
个人解法
思路:
1.新建一个LinkedHashSet
2.遍历输出有序数组,然后追加到set中
代码示例:(Java)
public class Solution {
public int removeDuplicates(int[] nums) {
LinkedHashSet<Integer> integers = new LinkedHashSet<>();
for (int num : nums) {
integers.add(num);
}
System.out.println(integers);
return integers.size();
}
}
复杂度分析
- 时间复杂度:O(n),其中 n 是数组的长度。
- 空间复杂度:O(1)。只需要使用常数的额外空间。
官方解法
方法1:双指针
思路:
这道题目的要求是:对给定的有序数组 nums 删除重复元素,在删除重复元素之后,每个元素只出现一次,并返回新的长度,上述操作必须通过原地修改数组的方法,使用 O(1) 的空间复杂度完成。
由于给定的数组 nums 是有序的,因此对于任意 i<j,如果 nums[i]=nums[j],则对任意 i≤k≤j,必有 nums[i]=nums[k]=nums[j],即相等的元素在数组中的下标一定是连续的。利用数组有序的特点,可以通过双指针的方法删除重复元素。
如果数组 nums 的长度为 0,则数组不包含任何元素,因此返回 0。
当数组 nums 的长度大于 0 时,数组中至少包含一个元素,在删除重复元素之后也至少剩下一个元素,因此 nums[0] 保持原状即可,从下标 1 开始删除重复元素。
定义两个指针 fast 和 slow 分别为快指针和慢指针,快指针表示遍历数组到达的下标位置,慢指针表示下一个不同元素要填入的下标位置,初始时两个指针都指向下标 1。
假设数组 nums 的长度为 n。将快指针 fast 依次遍历从 1 到 n−1 的每个位置,对于每个位置,如果 nums[fast]
=nums[fast−1],说明 nums[fast] 和之前的元素都不同,因此将 nums[fast] 的值复制到 nums[slow],然后将 slow 的值加 1,即指向下一个位置。
遍历结束之后,从 nums[0] 到 nums[slow−1] 的每个元素都不相同且包含原数组中的每个不同的元素,因此新的长度即为 slow,返回 slow 即可。
代码示例:(Java)
public class Solution1 {
public int removeDuplicates(int[] nums) {
int n = nums.length;
if (n == 0) {
return 0;
}
int fast = 1, slow = 1;
while (fast < n) {
if (nums[fast] != nums[fast - 1]) {
nums[slow] = nums[fast];
++slow;
}
++fast;
}
return slow;
}
}
复杂度分析
- 时间复杂度:O(n),其中 n 是数组的长度。快指针和慢指针最多各移动 n 次。
- 空间复杂度:O(1)。只需要使用常数的额外空间。
考察知识点
1.断言
2.有序数组