【Leecode】Leecode刷题之路第51天之N皇后

Scroll Down

题目出处

51-N皇后-题目出处

题目描述

51-N皇后-题目描述

个人解法

思路:

todo

代码示例:(Java)

todo

复杂度分析

todo

官方解法

51-N皇后-官方解法

前言

51-N皇后-官方解法-前言

方法1:基于集合的回溯

思路:

51-N皇后-基于集合的回溯-思路1
51-N皇后-基于集合的回溯-思路2

代码示例:(Java)

public class Solution1 {
    public List<List<String>> solveNQueens(int n) {
        List<List<String>> solutions = new ArrayList<List<String>>();
        int[] queens = new int[n];
        Arrays.fill(queens, -1);
        Set<Integer> columns = new HashSet<Integer>();
        Set<Integer> diagonals1 = new HashSet<Integer>();
        Set<Integer> diagonals2 = new HashSet<Integer>();
        backtrack(solutions, queens, n, 0, columns, diagonals1, diagonals2);
        return solutions;
    }

    public void backtrack(List<List<String>> solutions, int[] queens, int n, int row, Set<Integer> columns, Set<Integer> diagonals1, Set<Integer> diagonals2) {
        if (row == n) {
            List<String> board = generateBoard(queens, n);
            solutions.add(board);
        } else {
            for (int i = 0; i < n; i++) {
                if (columns.contains(i)) {
                    continue;
                }
                int diagonal1 = row - i;
                if (diagonals1.contains(diagonal1)) {
                    continue;
                }
                int diagonal2 = row + i;
                if (diagonals2.contains(diagonal2)) {
                    continue;
                }
                queens[row] = i;
                columns.add(i);
                diagonals1.add(diagonal1);
                diagonals2.add(diagonal2);
                backtrack(solutions, queens, n, row + 1, columns, diagonals1, diagonals2);
                queens[row] = -1;
                columns.remove(i);
                diagonals1.remove(diagonal1);
                diagonals2.remove(diagonal2);
            }
        }
    }

    public List<String> generateBoard(int[] queens, int n) {
        List<String> board = new ArrayList<String>();
        for (int i = 0; i < n; i++) {
            char[] row = new char[n];
            Arrays.fill(row, '.');
            row[queens[i]] = 'Q';
            board.add(new String(row));
        }
        return board;
    }


}

复杂度分析

51-N皇后-基于集合的回溯-复杂度分析

方法2:基于位运算的回溯

思路:

51-N皇后-基于位运算的回溯-思路1
51-N皇后-基于位运算的回溯-思路2
51-N皇后-基于位运算的回溯-思路3
51-N皇后-基于位运算的回溯-思路4
51-N皇后-基于位运算的回溯-思路5
51-N皇后-基于位运算的回溯-思路6
51-N皇后-基于位运算的回溯-思路7

代码示例:(Java)

public class Solution2 {
    public List<List<String>> solveNQueens(int n) {
        int[] queens = new int[n];
        Arrays.fill(queens, -1);
        List<List<String>> solutions = new ArrayList<List<String>>();
        solve(solutions, queens, n, 0, 0, 0, 0);
        return solutions;
    }

    public void solve(List<List<String>> solutions, int[] queens, int n, int row, int columns, int diagonals1, int diagonals2) {
        if (row == n) {
            List<String> board = generateBoard(queens, n);
            solutions.add(board);
        } else {
            int availablePositions = ((1 << n) - 1) & (~(columns | diagonals1 | diagonals2));
            while (availablePositions != 0) {
                int position = availablePositions & (-availablePositions);
                availablePositions = availablePositions & (availablePositions - 1);
                int column = Integer.bitCount(position - 1);
                queens[row] = column;
                solve(solutions, queens, n, row + 1, columns | position, (diagonals1 | position) << 1, (diagonals2 | position) >> 1);
                queens[row] = -1;
            }
        }
    }

    public List<String> generateBoard(int[] queens, int n) {
        List<String> board = new ArrayList<String>();
        for (int i = 0; i < n; i++) {
            char[] row = new char[n];
            Arrays.fill(row, '.');
            row[queens[i]] = 'Q';
            board.add(new String(row));
        }
        return board;
    }


}

复杂度分析

51-N皇后-基于位运算的回溯-复杂度分析

小结

51-N皇后-官方解法-小结

考察知识点

1.位运算

收获

Gitee源码位置

51-N皇后-源码

同名文章,已同步发表于CSDN,个人网站,公众号